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Steady-State Equilibrium Analysis of a Multibody System Driven 
by Constant Generalized Speeds 

Dong Hwan Choi, Jung Hun Park, Hong Hee Yoo* 
School o f  Mechanical Engineering, Hanyang University, Seoul 133- 791, Korea 

A formulation which seeks steady-state equilibrium positions of constrained multibody 

systems driven by constant generalized speeds is presented in this paper. Since the relative 

coordinates are employed, constraint equations at cut joints are incorporated into the 

formulation. To obtain the steady-state equilibrium position of a multibody system, nonlinear 

equations are derived and solved iteratively. The nonlinear equations consist of the force 

equilibrium equations and the kinematic constraint equations. To verify the effectiveness of the 

proposed formulation, two numerical examples are solved and the results are compared with 

those of a commercial program. 
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1. Introduction 

A formulation which employs relative coor- 

dinates and seeks steady-state equilibrium posi- 

tions of multibody systems driven by constant 

generalized speeds is presented in this paper. 

The proposed method has an advantage of 

obtaining the equilibrium positions directly by 

using iterative method. Therefore there is no need 

to integrate system equation of motion. In case of 

using available commercial programs, however, 

the steady-state equilibrium positions can be 

obtained by performing dynamic analysis with a 

proper artificial damping. Various kinds of the 

conventional static equilibrium analysis methods 

(Nikravesh, 1988; Haug, 1988; Nikravesh and 

Srinivasan, 1985 ; Kim et al., 1999), which deter- 

mine a correct set of coordinates prior to a dyna- 

mic analysis, have been proposed. But with 

these conventional methods, steady-state equilib- 

rium positions of multibody system driven by 
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constant generalized speeds cannot be found. 

An analytical method of finding steady-state 

equilibrium positions of multibody system with 

constant generalized speeds is presented in Kane 

and Levinson (1985). With this method, if the 

kinetic energy function does not involve time 

explicitly, the steady-state equilibrium positions 

of the system can be obtained by setting the 

partial derivatives of the system Lagrangian with 

respect to system generalized coordinates at zero. 

However, rather simple systems can be solved 

with this method and a method of determining 

proper system generalized coordinates efficiently 

has not been suggested. In general, if Cartesian 

coordinates are employed for the system driven 

by constant generalized speeds, the steady-state 

equilibrium positions cannot be found since the 

positions are varied with time. In this paper, 

therefore, the relative coordinates iKim and 

Vanderploeg, 1986; Bae and Haug, 1987a) are 
employed as system generalized coordinates. For 

the open- loop  system, equations of  motion are 

derived without constraint equations while for the 

closed--loop system, the constraint equations of 

cut joints (Bae and Haug, 1987b) are supple- 

merited to the equations of motion. In order to 
August 30. 2001; Revised July 5, 2002) find steady state equilibrium positions of multi- 
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body systems driven by constant generalized 

speeds, system generalized coordinates are par- 

titioned into the coordinates of constant gen- 

eralized speeds and the rest of  the system 

generalized coordinates. The proposed method 

can be applied to both open and closed loop 

systems. Force equilibrium equations (for open 

and closed loop systems) and kinematic con- 

straint equations (,for closed loop systems) con- 

stitutes nonlinear equations that need to be solved 

iteratively to obtain the steady-state equilibrium 

positions. Therefore the proposed method has the 

advantage of obtaining the equilibrium positions 

directly since it doesn't need to solve differential 

equations. 

2. Equations of Motion 

A general rigid body can be represented in 

three-dimensional space by six coordinates. Three 

of the coordinates define the orientation of the 

body and the other three coordinates define the 

translational position. All six coordinates are 

defined with respect to an inertial reference frame. 

The orientation coordinates are normally obtain- 

ed using three successive rotational angles about 

an orthogonal axis. 

Consider a body i in a three dimensional space 

shown in Fig. 1. Let X - Y - Z  be the global 

coordinate system with origin O and x ~ - - y i - - z ;  

be the body fixed coordinate system with Or. The 

vector bold r ,  is a vector that defines the global 

y 

/ 
Z 

Copyrigh F''at[C) * ~oving body in space 2003 NuriMedia Co., Ltd. 

position of  the origin O~. In this paper, a gen- 

eralized Cartesian coordinates for body i in a 

mult ibody system are defined as 

x , = [ r ,  ~ O,q ~ (1) 

where the set O~ is a set of  generalized rotational 

coordinates that define the orientation of  the 

body i. 
In general, the augmented Lagrange equations 

of motion for a constrained mult ibody system in 

terms of  Cartesian coordinates are derived as 

M:r + a~xr,t, = O (2) 

where .,if is a system mass matrix, Q is a gen- 

eralized force vector, ~x is the Jacobian matrix of 

constraint equations with respect to Cartesian 

coordinates, and 2 is a vector of Lagrange multi- 

pliers. The constraint equations are partitioned as 

In the above equation, (I) c represent kinematic 

constraints from cut joints in closed loop system 
and ~ r  represent the rest constraints. Figure 2 

shows ~ c  and ~ "  for a simple closed loop system. 

In this paper, the system generalized coordinate 

q~ can be defined as the relative coordinates 

determined by the type of joint  between body i 

and its reference body. Generally, the Cartesian 

~ r ,  

z.,I 

o m 

nO  

Fig. 2 
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A schematic representation of a closed loop 

system 
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velocity vector of a multibody system can be 

represented in terms of relative velocity vector by 
velocity transformation (Kim and Vanderploeg, 
1986; Bae and Haug, 1987a) as 

Jc= B q  (4) 

w h e r e  B is the velocity transformation matrix, 
and the system Cartesian velocity vector ~: and 
the system generalized velocity vector # are 

defined as 

x=Ex, ... ze, ] (5) 
4=[r a~ . - .  Cp]~ (6) 

In the above equations, n represents the number 
of bodies and /~ represents the number of relative 
coordinates. 

In order to derive the equations of  motion for 
the system with constant generalized speeds, the 
system generalized coordinates q are partitioned 
into qo (the coordinates which involve with con- 
stant generalized speeds) and qR (the rest gen- 
eralized coordinates). 

q = [ q ~  ql;] ~ (7) 

Figure 3 shows the generalized coordinates qo 
and q~ for a simple system. Therefore, the system 
Cartesian velocity vector .~ can be represented in 
terms of ~/o and q~ as 

Yc = BMI~ + B,~OR (8) 

where qo represents constant generalized speeds 
and 0a represents the time derivatives of qa. 
And the velocity transformation matrix and go 
and B~ are sub-matrices associated with the 
coordinates qo and qe. Therefore, B is composed 
B~ and B~ as 

B=[B~ B~] (9', 

Similarly the system Cartesian acceleration vec- 
tor is obtained by taking the time derivative of 
Eq. (8) 

~ t g 

)i=Bor162 (10) 

Substituting Eqs. (3) and (10) into Eq. (2) and 
premultiplying Eq. (2) by Be t, one obtains 

Bt[M(BDqD+B,q,+BoOo+B,#~) § '] (I I) 
=BI0 

Since qo is constant vector, qo is identically zero 
vector. The constraint Jacobian matrix with 
respect to the generalized coordinates q~, ~q, can 
be obtained using the chain rule of differentiation 
and the dot cancellation law (Rosenberg, 1977) 
a s  

Since the velocity transformation matrix BR is the 
null space of the constraint Jacobian matrix ~.~. 
the following equation is obtained. 

T YT__  B, O~ - 0  (13) 

Using the Eq. (13), Eq. (11) can be rewritten as 

M'ilR + ~ , r , ~ c = Q  * (14) 

where 

M ' = B r M B R  (15) 

Q*=BetQ-Br~(MBo#~+MB~o~)  (16) 

Since ~o is identically zero vector, the constraint 
acceleration equations, the .second time 
derivatives of the constraint equations (~c----O), 
can be written as 

,.17; �9 g , / l ~  = 7 c , , 

where the vector T c which involves second partial 
derivative terms is defined as 

T c = - ( @ g ,  qr)q, il~-2~Jl~o, t q ~ - ~ f i  (18) 

Combining Eq. (14) and Eq. (17), the system 
equations of motion can be written in a matrix 
form as follows: 

Therefore, the dynamic analysis of a constrained 
multibody system driven by constant generalized 

Fig. 3 Generalized coordinates qo and q~r ts .p~ds can be performed by using Eq. (19). 
Copyright (C) 2003  NuriMedia Co., L 
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3. Equilibrium Analysis 

At steady-state, bold qR and its time derivatives 

/1~ become zero. Therefore Eq. (14) becomes as 

B r [  MBDCn~__ O-~ • ~r : _  , ~q. ,~ - 0  (20) 

To find the steady-state equilibrium positions, the 

Eq. (20) and the constraint equation,~ ((l)C=0) 

are to be solved simultaneously. Therefore the 

algorithm which seeks the steady-state equilibrium 

positions leads to nonlinear equations which 

consist of the force equilibrium equations and the 

kinematic constraint equations. To solve the non- 

linear equations, the iterative Newton-Raphson 

procedure is employed as follows : 

. f ,  z l z ' - -  - y (2 l) 

Zi41= gi'+'~Z ' (22) 

where 

Z=[~/Rr ,~cr]r ,24," " 

In the above equation, the Jacobian matrix fz  

represents a f /  az. 

Applicat ion of the present algorithm is as same 

as that given for the static equilibrium analysis 

problem except that not only initial conditions 

for positions but also those for generalized speeds 

should be provided to solve the algebraic equa- 

tions. Of course, the formulation for the steady- 

state equilibrium analysis is different from that of 

the static equilibrium analysis. However, those 

two formulations are all algebraic equations 

which can be solved by the Newton-Raphson 's  

method. 

4. Numerical Examples 

4.1 2 DOF swing pendulum driven by a con- 
stant angular velocity 

Two DOF (degree of freedom) swing pendu- 

lum system driven by a constant angular velocity 

( ~ = 2 0  rad/s) is shown in Fig. 4. This is a typi- 
cal open loop system that undergoes planar mo- 

tion. Ground and body 1, and body 1 and body 2 

Table 1 Inertia properties of the swing pendulum 

Moment of inertia Iz-r 
Body Mass [kg] [kg ,m,_~ 

Body I 1.0 0.1 

Body 2 0.0 0.0 

Body 3 1.0 0.0 

REV O ~  d 8 
: Revolute joint 

TRAN : Translational joint 
| 

1"RAN 

Y 

1 RF_.V ~ kt N'-'-'-'- REV 

Fig. 4 2-DOF swing pendulum driven by constant 
angular velocity 

are connected by revolute joints respectively. 

Body 2 and body 3 are connected by translational 

joint. And body 1 and body 2 are connected by 

the rotational spring. The stiffness and the undo- 

formed angle of the spring are kr--=-300 Nm/rad  

and 1.0472 tad, respectively. Body 2 and body 3 

are connected by the translational spring. The 

stiffness and the undeformed length of the spring 

are kt=50000 N / m  and 1.0m, respectively. At 

initial state, the relative angle 0 between body 1 

and body 2 is 0 rad and the relative distance d is 

1.0 m. The length of body 1 is 1.0 m, The mass 

and inertia properties of this system are given in 

Table 1. 

From the equilibrium analysis, Fig. 5 shows 

the relative angle ~ between body 1 and body 2. 
At steady-state, Fig. 5 shows that the equili- 

brium position obtained by the proposed method 

(marked by a wedge) and the result obtained by 

ADAMS~I0]  are almost identical, in this figure, 

cr and ct are rotational and translational dam- 

ping coefficient, respectively. Table 2 shows the 
ADAMS simulation data. Figure 6 represents 

relative distance d between body 2 and body 3. At 
steady-state, the equilibrium position obtained by 

the proposed method and the result obtained 

Copyright (C) 2003 NuriMedia Co., Ltd. 
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by ADAMS(wi th  a proper damping) are almost 

identical. However, in case of  using the corn- 

'Fable 2 ADAMS simulation data 

ADAMS Simulation Data [ Setting values 
1 Simulation Type Dynamics 

Integrator Gear (GSTIFF) 

Step 5000 

Step Size 0.001 

Corrector Convergence tolerance 1.0E-8 

Integrator Order ' Max Possible 

Upper bound for the maximum 
20 number of iteration 

Jacobian Evaluation Every iteration 

Linear Solver Harwell 
i 

0 1 5 .  

0 4 .  

0 . 7 -  

- O 2  

- 0 . 4  

. . . .  :~D-.,hM.'~v,.i,~'~ mmmk:m~,~r e l i~pm~,  

~c t - 1 0 0 0 0 , 0  b ~  

~ , - ~ ) . O l ' I n l l x i ,  t l d  7 

Fig. 5 

f o a l .  

~ .  
#. 

1.00- 

! r �9 

{2 1 

mercial program, if there is no damping, the 

steady-state equilibrium positions are not found 

by the conventional method. In this paper, how- 

ever, there is no need to assign a proper damping 

data in order to find steady-state equilibrium 

positions. Therefore these analysis results show 

that the proposed algorithm is accurate and 

efficient compared to the conventional method 
which performs dynamic analysis. 

4.2 Governor mechanism driven by a con- 

stant angular velocity 

i �9 1 , i ' , i 

2 3 4 5 

Fig. 6 Relative distance between body 2 aod b~tdy 3 
Copyright (C) 2003 NuriMed a Co., Ltd. 

A governor mechanism is shown in Fig. 7. This 

system is 1 DOF closed loop system. The spindle 

is driven by a constant angular velocity of 

11.0174 rad/s. In this figure, the bodies I, 2, 3, 

and 4 represent spindle, ball, ball and collar, 

respectively. Ground and body 1, body I and 

body 2, and body 1 and body 3 are connected by 

rcvolute joints. Body 1 and body 4 are connected 

by translational joint. Body 2 and body 4, and 

body 3 and body 4 are connected by distance 
joints with distance of 0.I0922m. Body 1 and 

body 4 are connected by the translational spring. 

The stiffness and the undeformed length of the 

spring are kt = 1000 N/m and 0.15 m, respectively. 

At initial state, the relative distance between 

Y 
/ 

R~ angle b .w n h o d , ,  a.d hod, 2 
REV 

�9 ~ i(I.OI$l) l ~  
i t t l l  I I  1 
..... t t l i l i l )  

i ~ ,,~ 1000oe ~,e/m ] DIST DIST 

TRAN " " - - - - - ' ~ 1 / ~  x l 

" J  �9 t - - x i 

n m ~  Fig. 7 Governor mechanism driven by constant 
angular velocity 
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Table 3 Inertia properties of the governor 
mechanism 

Body 

Spindle 

Bal l  I 

Ball 2 

M a ~ s  

-ks ]  I h,,- 

i Moment of inertia [kg.mZ~ 

200.0 i 25.0 

l.O 1 0.1 
1.0 0.1 

i l~-y- 1~-~ 

i -  ' 
_ _  5 0 . 0  25.0 

', O1 0.1 

0. I 0.1 

0.125 0.15 Collar 1.0 0. I5 

Table 4 Initial values of the governor mechanism 
- i 

Point ! Initial Position :m] 

o~ ' ~o.o, o.2, o.o] 
1 

02 [--0.16, 0.2, 0.0] 

Oa ~ [0.16, 0.2, 0.0] 

o, I - -  [00,01256,00i 
. . . .  . 

P [--0.08, 0.2.0.0] 

Q [. [o.o8, o.2, o.o] 

C U ~ , N / ~  cut  

REV : Revolute joint [ R E V  
TRAN : Translational joint 
DIST " Distance joint 

Fig. g Tree structure of the governor mechanism 

spindle and collar is 0.0744 m and the relative 

angles between spindle and balls are 0 rad, and 

the orientauons of all the bodies are parallel to 

the orientation of the inertial reference frame. 

Table 3 shows the mass and inertia properties 
of the system. Table 4 shows initial positions of 

the governor mechanism. Figure 8 shows the 

topology of the system using graph theory. In this 
figure, the number inside a circle represents body 

number and the line represents joint  type. Since 

the governor mechanism is the closed loop sys- 

tem, the distance joints between collar and balls 

Table 5 ADAMS simulation data 
r 

ADAMS Simulation Data I Setting values 

Simulation Type T Dynamics 

Integrator Gear (GSTIFF) 

Step 10000 

Step Size 0. O I 

Corrector Convergence tolerance 1.0E-8 

Integrator Order Max Possible 

Upper bound for the maximum 
20 

number of iteration 

Jacobian Evaluation Ever)' iteration 

Linear Solver Harwell 

0,2~- 

o . ~  

0 , ~ 0  

0100. 

0,075 

0.C~O 1, 

Fig. 9 

ADAMS ~th dmul~ing(c ~ .,]0 Ns~c/m) 
ADAMS without rhmplr~ 

. . . - . .  

0 ~ 10 1 

Tin~ec) 

Relative distance between spindle and collar 

become cut joints as shown in Fig. 8. 

From the equilibrium analysis, Fig. 9 shows the 

relative distance between spindle and collar. 

Table 5 shows the A D A M S  simulation data. At 

steady-state, Fig. 9 shows that the equilibrium 

position obtained by the proposed algorithm and 

the result obtained by ADAMS(wi th  a proper 

damping) are almost identical. Therefore, these 

analysis results show that the proposed algorithm 

is accurate and efficient for a closed loop system 

as well as for a open loop system. 

5.  C o n c l u s i o n s  

A formulation which seeks the steady-state 

equilibrium positions of constrained multibody 

systems driven by constant generalized speeds is 

Copyright (C) 2003 NuriMedia Co., Ltd. 
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presented. The method proposed in this paper, 
compared to the conventional method of using 
dynamic analysis with a proper damping, has the 
advantages of obtaining the equilibrium positions 
directly by solving nonlinear equations. The 
accuracy and the effectiveness of the proposed 
method are confirmed through two numerical 
examples. 
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